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Abstract. We investigate the features of the electromagnetic transitions in the chiral 132Pr and 134Pr
within the framework of particle rotor model, to understand why the measured B(M1)/B(E2) ratios for
the yrare band are almost an order of magnitude larger than the corresponding ratios for the yrast band
at low spins.

PACS. 21.60.Ev Collective models – 27.60.+j Properties of specific nuclei listed by mass ranges

A system is chiral if it is not symmetric with respect
to a mirror reflection in any plane. Nuclear chirality [1] re-
sults from an orthogonal coupling of the angular momen-
tum vectors in triaxial nuclei. The spontaneous symmetry
breaking of the chiral symmetry manifests itself in a pair
of degenerate bands [2]. The energy degeneracy between
chiral doublets built on the same band structure, a nearly
independent of spin S(I) = [E(I)− E(I − 1)]/2I for the
chiral region, and the characteristic electromagnetic prop-
erties [3,4] are the experimental chiral fingerprints. Fol-
lowing the first example of a chiral nucleus, 134Pr, twelve
chiral candidates have been found in odd-odd nuclei in the
mass 130 region: 126–132Cs, 130–134La, 132–134Pr, 136Pm,
138–140Eu. Possible chiral pairs have been also reported
in the even-odd 135Nd [5] and in the even-even 136Nd [6].
Recently, experimental work around the mass 100 region
102–106Rh [7] gives promising results. The best known ex-
ample of a chiral doublet is provided by 104Rh [8].
The appearance of chiral bands is considered a strong

evidence for the existence of triaxial deformations, since
the chiral geometry cannot occur in an axially symmet-
ric nucleus. In the mass 130 region, the chiral geometry
is realized when the proton and neutron-hole occupy the
lowest and the highest substates, respectively. The inter-
play of these tendencies towards elongated and disk-like
shapes, may yield to a stable triaxiality [9].
Existing 134Pr calculations reproduce the staggering

pattern for the B(M1)/B(E2) ratio for both the yrast
and yrare bands and the B(M1)in/B(M1)out for the yrare
band, but could not explain why for spins below 16+, the
measured B(M1)/B(E2) ratios for the yrare band are al-
most an order of magnitude larger than corresponding ra-
tios for the yrast band [10]. The calculated ratios for both
the yrast and yrare bands are almost identical [10,11,12].
The aim of this work is to calculate the electromagnetic

transitions in the chiral 132Pr and 134Pr using the Particle
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Rotor Model (PRM). Although it lacks self-consistency,
ignores the change in shape induced by rotation, and does
not take into account the nucleus’ polarization by the va-
lence particles, the PRM uses wavefunctions having a good
angular momentum and describes the system in the labo-
ratory frame. Therefore the PRM directly yields the split-
ting between bands and the transition probabilities.

Even having lifetime measurements available, because
the nuclei of interest are triaxial, the values of ε2 and
γ cannot be extracted from the experimental data. The
irrotational flow formula produces the largest moment of
inertia with respect to the medium axes for γ = 30◦, which
favors the aplanar orientation of the angular momentum.
The value of γ practically does not influence the align-
ments of the valence particle and hole on the short and
long axis, but these alignments are well defined only for
sufficiently large values of deformation ε2 [13,14]. Calcu-
lations for 132Pr and 134Pr were performed for γ = 30◦

and various values of ε2. The values for the other param-
eters used in the calculations were: u0 = −0.90 MeV,
and u1 = −0.10 MeV for the Vnp interaction, gn0 = 18.3
and gn1 = 7.0 for the pairing strength, and ξ = 0.70 and
η = 1.0 for the Coriolis attenuation.

The PRM calculations reproduce well the experimen-
tal [15,16,17] trend in excitation energies and the stag-
gering pattern in energy splitting S(I), in B(M1)/B(E2)
for both chiral partners, and in B(M1)in/B(M1)out ra-
tios. For the choice of parameters mentioned above, larger
values of the ε2 (0.333) reproduce the ∼ 300 keV mea-
sured separation energy between the chiral bands. Smaller
values of the ε2 (0.275) give closer values to the experi-
mental B(M1)/B(E2) and B(M1)in/B(M1)out ratios in
134Pr. The calculated inband B(M1) for the yrast and
yrare bands are shown in figs. 1 and 2, while the B(E2)
are presented in figs. 3 and 4. As the spin increases, the
B(E2) values within the two chiral partners become equal
and slowly increase. The B(M1) show the characteristic
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132 Pr - yrast ∂2=0.275 132 Pr - yrare ∂2=0.275

132 Pr - yrast ∂2=0.333 132 Pr - yrare ∂2=0.333
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Fig. 1. The calculated yrast (left panels) and yrare (right pan-
els) B(M1) vs. spin for 132Pr. The ε2 deformation parameters
used were 0.275 (top panels) and 0.333 (bottom panels).
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Fig. 2. The calculated yrast (left panels) and yrare (right pan-
els) B(M1) vs. spin for 134Pr. The ε2 deformation parameters
used were 0.275 (top panels) and 0.333 (bottom panels).
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Fig. 3. The calculated yrast (left panels) and yrare (right pan-
els) B(E2) vs. spin for 132Pr. The ε2 deformation parameters
used were 0.275 (top panels) and 0.333 (bottom panels).

odd-even staggering, more pronounced at higher spins.
This calculation indicates that for 132Pr the ratios for the
yrare band are a factor of 2.0 and 2.5 smaller than for
the yrast band with the ε2 values 0.333 and 0.275, respec-
tively, and almost identical in 134Pr, for both ε2 values
0.333 and 0.275. Further, the calculation underestimates
the experimental staggering in the B(M1)in/B(M1)out for
134Pr by a factor of 2.
The PRM calculations described above could not ex-

plain why in 134Pr, the measured B(M1)/B(E2) ratios
for the yrare band are almost an order of magnitude
larger than the corresponding ratios for the yrast band
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Fig. 4. The calculated yrast (left panels) and yrare (right pan-
els) B(E2) vs. spin for 134Pr. The ε2 deformation parameters
used were 0.275 (top panels) and 0.333 (bottom panels).

at low spins. Also, the values of ε2 that reproduce the
∼ 300 keV measured separation energy between the chiral
bands and the energy splitting S(I) are large compared
to the predicted values for the mass 130 region [18], and
to the measured deformations in the neighboring nuclei.
Smaller measured deformations than the sufficiently large
theoretical values of ε2 needed to build a chiral geome-
try [13,14] may be the reason why the Pr nuclei are not
the best known examples of chiral nuclei. Especially for
weak pairing, the moments of inertia may deviate from
the irrotational-flow values. More work is currently under-
taken to find the influence other PRM-related parameters
have on improving the theoretical understanding of the
B(M1) and B(E2) for the chiral doublets in 132Pr and
134Pr.
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